Stress corrosion cracking (SCC) of discs (at keyways, bores, and blade attachments) is caused by a combination of high surface stresses, a susceptible material and operational and shutdown environments. Design-related root causes are the most important and prevalent. They include high surface tensile stresses and stress concentrations, and use of high strength materials.
This article contains excerpts from the paper, "Steam turbine corrosion: Problems and solutions" presented at the 37th Turbomachinery Symposium by Otakar Jonas and Lee Machemer of Jonas, Inc.
Sources of stresses that contribute to SCC of discs include:
Steam chemistry root causes of SCC and CF cracking include:
Solutions
In most cases where material yield strength is <130 ksi (895 MPa), the solution to disc SCC is a design change to reduce stresses at critical locations. This has been achieved by eliminating keyways or even disc bores (welded rotors) and by larger radii in the blade attachments. Higher yield strength (>130 ksi, 895 MPa) low alloy steel discs should be replaced with lower strength materials.
The goal is to keep the ratio of the local operating stress to yield stress as low as possible, ideally aiming for the ratios to be less than 0.6. Minimizing applied stresses in this manner is most beneficial in preventing initiation of stress corrosion cracks. Once cracks begin to propagate, a reduction in stress may be only marginally effective unless the stress intensity can be kept below ~10 to 20 ksi-in1/2 (11 to 22 MPa-m1/2).
This is because of the relative independence of the crack growth rate over a broad range of stress intensities. For many rim attachment designs, such levels of applied stress intensity are impossible to achieve once an initial pit or stress concentration has formed. An emerging solution to disc rim stress corrosion cracking is a weld repair with 12%Cr stainless steel.
Another solution has been to shot peen the blade attachments to place the hook fit region into compression. Good control of the steam purity of the environment can help to prevent or delay the SCC. Maintaining the recommended levels of impurities during operation and providing adequate protection during shutdown can help minimize the formation of deposits and corrosive liquid films, and lengthen the period before stress corrosion cracks initiate.
The operating period(s), events, or transients that are causing excursions in water and steam chemistry should be identified using the monitoring locations and instrumentation recommended in the independent water chemistry guidelines (EPRI, 1986, 1994c, 1998b, 1998c, 2002a; Jonas, et al., 2000) and special monitoring as shown in Figure 15.
TurboTime Podcast: Additive Manufacturing with the Myth Busters
June 7th 2024What’s the history of additive manufacturing, how is it used to manufacture turbomachines, and does it really have a future in the turbo industry? Find out more from the Myth Busters in this episode of the TurboTime Podcast.
Exhaust Gas Recirculation Boosts Carbon-Capture Efficiency and Reduces Costs, says GE Vernova
November 8th 2024Jeremee Wetherby, the Carbon Solutions Director at GE Vernova, offers deeper insights into the benefits of retrofitting carbon-capture systems with an exhaust gas recirculation system.